8,395 research outputs found

    Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    Full text link
    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m2^2 with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to deliver a wealth of data and information which could serve as a decision base for governmental launch licensing of SSP satellites, and which can be used in addition to deepen public acceptance of SSP as a large-scale renewable energy source. Copyright 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Comment: 7 pages, 3 figures; to be published in IEEE Xplore, in Proceedings to IEEE Aerospace 2014 Conference, Mar 1 - 8, 2014, Big Sky, MT, US

    Nonlinear mirror instability

    Full text link
    Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early nonlinear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasilinearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to nonlinear secular growth of magnetic perturbations, δB/Bt2/3\delta B/B \propto t^{2/3}. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of nonlinear mirror dynamics with trapping, valid up to δB/B=O(1)\delta B/B =O(1).Comment: 5 pages, submitte

    LOW-MASS X-RAY BINARIES AND THEIR RELATION TO THE NON-X-RAY SOURCES

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73252/1/j.1749-6632.1977.tb37032.x.pd

    X-ray Pulsations in the Supersoft X-ray Binary CAL 83

    Full text link
    X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.Comment: revised text; 11 pages and 3 figures; accepted for publication in the Astronomical Journa
    corecore